Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 673: 613-621, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30999102

RESUMO

Fate, bioavailability and toxicity of silver nanoparticles (AgNP) are largely affected by soil properties. Here we focused on how these processes are connected in simulated soil pore water. OECD soil components (sand, kaolin clay, peat) were covered with NM-300K-, AgNO3- and NM-300K dispersant-contaminated water, and Folsomia candida were exposed on the water surface. After 14 days the majority of AgNP was in nano form in sand pore water where also silver uptake was highest. Multilayered cross sections from X-ray micrographs of Collembola exposed to AgNP showed that silver was located in animal areas of direct contact to the contaminated pore water and was ingested. In contrast, in simulated peat pore water only a small fraction of silver was bioavailable. AgNO3 was only bioavailable at the start of the test and not anymore at test end. AgNP and AgNO3 caused immobilization in sand and kaolin pore water while no toxicity was found with peat and OECD soil. A strong correlation (correlation coefficient = 0.901) existed between the concentration of nano silver and immobilization; for ionic silver this was not the case. The dispersant of AgNP was toxic on its own in sand and kaolin pore water. As there are analytical limitations of quantifying AgNP in complex matrices this test system enables a mechanistic view of exposure and uptake of AgNP (and other substances) by F. candida from soil pore water.


Assuntos
Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Poluentes do Solo/toxicidade , Animais , Artrópodes/efeitos dos fármacos , Nanopartículas Metálicas/química , Tamanho da Partícula , Prata/química , Solo/química , Poluentes do Solo/química , Testes de Toxicidade
2.
Artigo em Inglês | MEDLINE | ID: mdl-29614765

RESUMO

Silver nanoparticles (AgNP) are increasingly emitted to the environment due to a rise in application in various products; therefore, assessment of their potential risks for biota is important. In this study the effects of AgNP at environmentally relevant concentrations (0.6-375 µg kg-1 soil) on the soil invertebrate Folsomia candida in OECD (Organisation for Economic Co-operation and Development) soil was examined at different soil water contents. Animals were retrieved by heat extraction, which had an efficiency of about 90% compared with the floatation method. The tested water content range is set by OECD Guideline 232 (40-60% of the maximum water holding capacity, WHC), and we detected significant differences in toxicity due to these. With AgNO3, used as an ionic control, the number of juveniles significantly decreased only at 40% WHC, which might be due to dilution of the toxicant at higher soil water content. In turn, at 60% WHC, the reproduction of F. candida significantly increased in the presence of AgNP compared with in the control. However, at this water content, the required number of juveniles in the control treatment was not reached in three independent tests. The fact that the OECD validity criterion is not met indicates that the soil conditions are not suitable for reproduction at 60% WHC.


Assuntos
Artrópodes/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Nitrato de Prata/toxicidade , Prata/toxicidade , Poluentes do Solo/toxicidade , Solo/química , Água , Animais , Testes de Toxicidade
3.
Environ Sci Eur ; 30(1): 6, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29456907

RESUMO

Nanoparticles serve various industrial and domestic purposes which is reflected in their steadily increasing production volume. This economic success comes along with their presence in the environment and the risk of potentially adverse effects in natural systems. Over the last decade, substantial progress regarding the understanding of sources, fate, and effects of nanoparticles has been made. Predictions of environmental concentrations based on modelling approaches could recently be confirmed by measured concentrations in the field. Nonetheless, analytical techniques are, as covered elsewhere, still under development to more efficiently and reliably characterize and quantify nanoparticles, as well as to detect them in complex environmental matrixes. Simultaneously, the effects of nanoparticles on aquatic and terrestrial systems have received increasing attention. While the debate on the relevance of nanoparticle-released metal ions for their toxicity is still ongoing, it is a re-occurring phenomenon that inert nanoparticles are able to interact with biota through physical pathways such as biological surface coating. This among others interferes with the growth and behaviour of exposed organisms. Moreover, co-occurring contaminants interact with nanoparticles. There is multiple evidence suggesting nanoparticles as a sink for organic and inorganic co-contaminants. On the other hand, in the presence of nanoparticles, repeatedly an elevated effect on the test species induced by the co-contaminants has been reported. In this paper, we highlight recent achievements in the field of nano-ecotoxicology in both aquatic and terrestrial systems but also refer to substantial gaps that require further attention in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...